Intelligente Beladungsplanung von Autoklaven mit künstlichen neuronalen Netzen

Ziel des Innovationsprojekts "BeNeNe" ist die Entwicklung einer KI-basierten Lösung zur optimierten Beladung von Autoklaven. In der industriellen Praxis dient ein Autoklav zur Aushärtung von unterschiedlichsten Faserverbund-Bauteilen, die sich in Form und Größe unterscheiden. Vier Partner – SHS plus GmbH, 3D ICOM GmbH & Co. KG, Institut für Polymer- und Produktionstechnologien e.V. und Faserinstitut Bremen e.V. – arbeiten gemeinsam an einem intelligenten Assistenzsystem für ressourcenschonende und selbstoptimierende Autoklavierprozesse. Gefördert wird das Projekt mit einem Gesamtvolumen von rund 863.000 Euro aus dem Zentralen Innovationsprogramm Mittelstand (ZIM).

Hochleistungsbauteile aus Faser-Kunststoff-Verbunden für die Luft- und Raumfahrtindustrie werden überwiegend im sogenannten Autoklav-Prepreg-Verfahren hergestellt. Die Aushärtung der Polymermatrix findet dabei unter Druck und erhöhter Temperatur im Autoklaven statt. Da in der industriellen Praxis eine Vielzahl an Bauteilvarianten vorkommt, muss die Anordnung im Autoklaven stets basierend auf Erfahrungswerten angepasst werden. Auf der einen Seite sollte dabei aufgrund des hohen Energiebedarfs auf eine optimale Raumausnutzung mit den Formwerkzeugen geachtet werden. Auf der anderen Seite muss die Qualität der Bauteile zwingend auf dem gleichen Niveau verbleiben. Aufgrund der großen Anzahl an Kombinationsmöglichkeiten bei der Beladung des Autoklaven ist eine vorausgehende, datenbasierte Optimierung für verschiedene Beladungsszenarien mittels derzeit verfügbarer Berechnungsmethoden nicht wirtschaftlich durchführbar.

Künstliche Intelligenz optimiert die Beladung von Autoklaven

Ziel des Projekts "BeNeNe" ist die Entwicklung eines intelligenten Assistenzsystems für eine ressourcen- und energieeffizientere Fertigung von Faserverbundbauteilen, die mittels Autoklavieren hergestellt werden. Hierbei stehen sowohl die vorbereitenden Fertigungsschritte als auch der Fertigungsprozess selbst im Fokus, um eine ganzheitliche und stetige Optimierung des Prozesses und der eingesetzten Ressourcen zu erlangen.

Die Basis des Systems soll aus einem künstlichen neuronalen Netz bestehen, in das Simulationsmodelle von Formwerkzeugen und Autoklaven implementiert werden. Die Modelle liefern dem neuronalen Netz komprimierte Erfahrungswerte für Bauteile, welche zusammen mit dem "Wissen" des neuronalen Netzes, zur optimalen Berechnung des jeweiligen Produktionsprozesses verwendet werden können. Diese Methode verringert den Zeitaufwand für Berechnungen enorm. Zur Vermessung von unterschiedlichen Autoklavierprozessen sollen sensorische Testwerkzeuge entwickelt werden, die mit einem Messsystem individuell ausgewertet werden.

Die Idee zum Projekt "BeNeNe" ist im Rahmen des Innovationsnetzwerks ENVIPRO – environmental friendly production entstanden, das über das Zentrale Innovationsprogramm Mittelstand (ZIM) gefördert wird. Im Zuge der Mitgliedschaft werden die Partner aktiv bei der Realisierung von FuE-Projekten sowie der Sicherstellung der Finanzierung unterstützt. Betreut wird ENVIPRO von der IWS GmbH, die auch das Antragsmanagement der Kooperationsprojekte übernimmt und die Mitglieder intensiv bei der Entwicklung neuer Technologien begleitet.

Weitere Informationen finden Sie unter www.envipro-zim.de

Projektpartner „BeNeNe“
SHS plus GmbH | Dinslaken | www.shs-plus.de
3D ICOM GmbH & Co. KG | Hamburg | www.3d-icom.com
Institut für Polymer- und Produktionstechnologien e.V. | Wismar | www.ipt-wismar.de
Faserinstitut Bremen e.V. | www.faserinstitut.de

Firmenkontakt und Herausgeber der Meldung:

IWS Innovations- und Wissensstrategien GmbH
Deichstraße 29
20459 Hamburg
Telefon: +49 (40) 3600663-0
Telefax: +49 (40) 3600663-20
http://www.iws-nord.de

Ansprechpartner:
Patrick Zessin
Öffentlichkeitsarbeit
Telefon: +49 (40) 3600663-15
E-Mail: p.zessin@iws-nord.de
Für die oben stehende Pressemitteilung ist allein der jeweils angegebene Herausgeber (siehe Firmenkontakt oben) verantwortlich. Dieser ist in der Regel auch Urheber des Pressetextes, sowie der angehängten Bild-, Ton-, Video-, Medien- und Informationsmaterialien. Die United News Network GmbH übernimmt keine Haftung für die Korrektheit oder Vollständigkeit der dargestellten Meldung. Auch bei Übertragungsfehlern oder anderen Störungen haftet sie nur im Fall von Vorsatz oder grober Fahrlässigkeit. Die Nutzung von hier archivierten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Eine systematische Speicherung dieser Daten sowie die Verwendung auch von Teilen dieses Datenbankwerks sind nur mit schriftlicher Genehmigung durch die United News Network GmbH gestattet.

counterpixel